Martin-Luther-Universität Halle-Wittenberg

Logo des SFB 762

Weiteres

Login für Redakteure

2016

09.03.2016: Spintronik – Hallesche Wissenschaftler entwickeln neues Herstellungsverfahren für ultradünne Schichten

Bessere Materialien für die Speicher- und Informationstechnik: Physiker der Martin-Luther-Universität Halle-Wittenberg (MLU) und des Max-Planck-Instituts für Mikrostrukturphysik (MPI) haben ein neues und einfacheres Verfahren zur Herstellung von ultradünnen Schichten aus Yttrium-Eisen-Granat entwickelt. Erstmals können so die besonderen magnetischen Eigenschaften dieses Materials auch in dünnen Schichten für die Spintronik ausgenutzt werden. In der Praxis lässt sich dadurch künftig die Größe neuer Bauelemente reduzieren, die für die Informationsverarbeitung eingesetzt werden können. Die Ergebnisse wurden kürzlich im Fachjournal "Scientific Reports" der Nature Publishing Group veröffentlicht.

Bislang wurden die nur wenige Nanometer dicken Schichten aus Yttrium-Eisen-Granat (YIG) bei sehr hohen Temperaturen hergestellt. Die Qualität war dabei aber schlechter als in dickeren Schichten. Im Rahmen des Sonderforschungsbereiches 762 "Funktionalität oxidischer Grenzflächen" ist es den halleschen Wissenschaftlern nun gelungen, YIG-Schichten bei Raumtemperatur zu erzeugen und damit zugleich die magnetischen Eigenschaften der dünnen Schichten zu verbessern. Magnetische Materialien werden heute in der Informations- und Speichertechnologie genutzt, um immer kleinere und schnellere Speicher zu entwickeln, aber auch um den klassischen Transistor in Zukunft zu ersetzen.

07.03.2016: Physiker der Universität Leipzig entwickeln Verbundmaterialien für Speicherzellen der Zukunft

Physiker der Universität Leipzig haben neuartige, sogenannte multiferroische Verbundmaterialien entwickelt, die künftig in Daten-Speicherzellen Verwendung finden könnten. Weltweit wird zurzeit intensiv nach derartigen Materialien gesucht, die eine Steuerung der magnetischen Wirkung mit einem elektrischen Signal oder auch umgekehrt erlauben. Damit könnten bisher unbekannte und zukunftsweisende elektronische Bauelemente wie "magneto-elektrische" Sensoren oder Datenspeicher hergestellt werden. Ihre Forschungsergebnisse haben sie jetzt in der renommierten Fachzeitschrift "Advanced Materials Interfaces" veröffentlicht.

Die Experimentalphysiker Prof. Dr. Michael Lorenz und Prof. Dr. Marius Grundmann vom Institut für Experimentelle Physik II nutzen dazu ein neuartiges Konzept, bei dem extrem dünne, nur wenige Atomlagen dicke Schichten aus einem multiferroischen und einem ferroelektrischen Stoff abwechselnd übereinander gestapelt werden. Beide Materialien sind Oxide, und die periodische Schichtstapelstruktur heißt Übergitter.

Prof. Grundmann erläutert: "Unsere Übergitter bestätigen die konzeptionelle Idee des Sonderforschungsbereiches 762, in dem diese Arbeit gefördert wird, nämlich dass Oxid-Materialien mit Grenzflächen neue und verbesserte Eigenschaften haben. Unsere Arbeiten machen magnetische Materialien mit der Mikroelektronik kompatibel."

In den kommenden Monaten wollen Lorenz und Grundmann den physikalischen Kopplungseffekt zwischen magnetischen und elektrischen Feldern noch weiter erforschen, sodass bald erste "magneto-elektrische" Speicherdemonstratoren vorgestellt werden können.

23.02.2016: Aktuelle Publikation – Wirbel aus Licht treiben Elektronen an

Wissenschaftler der Martin-Luther-Universität Halle-Wittenberg (MLU) haben eine neue Methode konzipiert, um elektrische Ladung mit Licht kontrolliert anzutreiben. So genannte optische Wirbel, die aus Lichtstrahlen bestehen, fungieren dabei ähnlich wie ein Wasserrad und befördern Ladungsträger von einem Reservoir in die gewünschten elektrischen Leiterbahnen. Die Ergebnisse wurden soeben im Fachjournal "Scientific Reports" der Nature Publishing Group veröffentlicht.

Optische Wirbel gelten als eine der interessantesten Neuentwicklungen in der Optik, die für viele Anwendungen in Frage kommen, etwa in der Kommunikationstechnologie zur Übertragung von Daten.

Zum Seitenanfang